Protein classification artificial neural system.

نویسندگان

  • C Wu
  • G Whitson
  • J McLarty
  • A Ermongkonchai
  • T C Chang
چکیده

A neural network classification method is developed as an alternative approach to the large database search/organization problem. The system, termed Protein Classification Artificial Neural System (ProCANS), has been implemented on a Cray supercomputer for rapid superfamily classification of unknown proteins based on the information content of the neural interconnections. The system employs an n-gram hashing function that is similar to the k-tuple method for sequence encoding. A collection of modular back-propagation networks is used to store the large amount of sequence patterns. The system has been trained and tested with the first 2,148 of the 8,309 entries of the annotated Protein Identification Resource protein sequence database (release 29). The entries included the electron transfer proteins and the six enzyme groups (oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases), with a total of 620 superfamilies. After a total training time of seven Cray central processing unit (CPU) hours, the system has reached a predictive accuracy of 90%. The classification is fast (i.e., 0.1 Cray CPU second per sequence), as it only involves a forward-feeding through the networks. The classification time on a full-scale system embedded with all known superfamilies is estimated to be within 1 CPU second. Although the training time will grow linearly with the number of entries, the classification time is expected to remain low even if there is a 10-100-fold increase of sequence entries. The neural database, which consists of a set of weight matrices of the networks, together with the ProCANS software, can be ported to other computers and made available to the genome community. The rapid and accurate superfamily classification would be valuable to the organization of protein sequence databases and to the gene recognition in large sequencing projects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Iranian traditional musical modes (DASTGÄH) with artificial neural network

The concept of Iranian traditional musical modes, namely DASTGÄH, is the basis for the traditional music system. The concept introduces seven DASTGÄHs. It is not an easy process to distinguish these modes and such practice is commonly performed by an experienced person in this field. Apparently, applying artificial intelligence to do such classification requires a combination of the basic infor...

متن کامل

Identification of Houseplants Using Neuro-vision Based Multi-stage Classification System

In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...

متن کامل

Application of Artificial Neural Networks in a Two-step Classification for Acute Lymphocytic Leukemia Diagnosis by Blood Lamella Images

Introduction: This study aimed to present a system based on intelligent models that can enhance the accuracy of diagnostic systems for acute leukemia. The three parts including preprocessing, feature extraction, and classification network are considered as associated series of actions. Therefore, any dysfunction or poor accuracy in each part might lead in general dysfunction of...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

A hybrid approach to supplier performance evaluation using artificial neural network: a case study in automobile industry

For many years, purchasing and supplier performance evaluation have been discussed in both academic and industrial circles to improve buyer-supplier relationship. In this study, a novel model is presented to evaluate supplier performance according to different purchasing classes. In the proposed method, clustering analysis is applied to develop purchasing portfolio model using available data in...

متن کامل

GDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers

Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 1 5  شماره 

صفحات  -

تاریخ انتشار 1992